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Abstract 
 

TeraGrid is the NSF-sponsored high-speed 40 Gbps 
backbone that is an essential part of Grid computing. 
The 40 (and 30) Gbps links are made of bonded paral-
lel 10 Gbps pipes. A hash is used to select the pipe for 
each connection. This simulation addresses the issue of 
how effectively the traffic gets split among the parallel 
pipes. In the simulation TeraGrid is connected to 33 
servers and 66 clients. 1-GB ftp sessions are launched 
until packets are dropped. This drop occurs in the 
nodes with the most non-uniform hash to select the 
session pipes. Losses begin to occur when TeraGrid is 
at just over 50% of its rated capacity because the ef-
fective bit rate and current pipe utilization change as 
packets go from  node to node. 
 
1. Introduction 
 

Simulation of computer networks is much 
cheaper, faster, and easier than actually building and 
testing the hardware itself. For example, TeraGrid [1] 
achieves its speed by bonding three or four 10 Gbps 
pipes to achieve greater throughput. We wanted to see 
whether this was an effective means of increasing the 
over-all throughput by performing a simulation. We 
used SSFNet 21], an open-source network simulation 
environment that can run under either Java or C++. 
The ORNL supercomputers consist of multiple nodes 
with multiple processors on each node, a configuration 
that is reminiscent of the network we were trying to 
simulate. Accordingly, with the help of Srdjan Petrovic 
(Dartmouth University), the Java version of SSFNet 
was ported to the IBM Eagle and Cheetah supercom-
puters at ORNL. 

There is more to the simulation than just running 
the code. SSFNet uses Domain Modeling Language 
(DML) as its input to describe the network configura-
tion. For a large network, with hundreds or thou-sands 
of elements, an automated way to read in network to-
pology, plot, and manipulate it is required. Accord-

ingly, a Java program NetViewer was developed to do 
these tasks. NetViewer is available at  
http://www.ornl.gov/~jar/NetViewer/Manual.htm.   

The topology of a large network (e.g., ORNL’s net-
work) would be extremely tedious and error-prone to 
enter by hand. Even for the 700+ nodes of our Tera-
Grid simulation, it advantageous to use NetViewer to 
configure the individual nodes and to place traffic on 
the network. The topology of TeraGrid is shown in 
Fig. 1. The subnets at each site have been expanded to 
show the router, servers, and clients. 
 
 

The unique feature of TeraGrid is the parallel 
bonded pipes that link the major routers. Four pipes 
are used between the Chicago and Los Angeles 
routers, and three pipes are used between these routers 
and the TeraGrid nodes at the San Diego Supercom-
puter Center (SDSC), Cal Tech, Argonne National 
Laboratory (ANL), and The National Center for Su-
percomputing Applications (NCSA) and the Pittsburgh 
Supercomputer Center (PSC). 
 
2. SSFNet modifications and issues 
 

SSFNet required several extensions in order to be 
able to simulate the TeraGrid. The built-in modules are 
limited to relatively low bandwidths because of a 64 
kB buffer size. The buffers were all extended to be at 
least twice the delay-bandwidth product—hundreds of 
megabytes.  Fortunately Java integers are long enough 
that the 1-GB transfer sessions did not cause integer 
overflows. 

Major rewrites of the IP code were required in order 
to simulate the link-bonded parallel pipes that connect 
the major grid nodes. The BGP routing protocol selects 
one and only one path between a source and destina-
tion, so we had to change the code to allow parallel 
pipes to share the same ip addresses at their ends. Sev-
eral different approaches were tried. 
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Fig. 1. The topology of TeraGrid. Routers are shown in green, site subnets in pink, and clients and 
servers in blue. The site subnets have been expanded to show the 33 servers and 67 clients attached 
to each site router. 

The first method was to select a pipe randomly for 
each packet. It was soon discovered that out-of-order 
packets occurred and cause tcp retransmissions. To 
eliminate out-of-order packets, we decided to query the 
queue for each parallel pipe and place the packet on 
the shortest queue. Picking the lowest queue guaran-
tees that the packet will arrive before the next packet 
and also enforce equal utilization of the multiple pipes. 
However, when the simulation was modified to select 
the lowest queue, the packets still eventually arrived 
out of order. After considerable effort, we discovered 
that the multithreaded nature of the simulation pre-
vented success. In between the time the length of the 
queue was checked and the packet was placed onto the 
shortest queue, other threads had already put packets 
onto the queue so that it was no longer the shortest. 
The architecture of SSFNet prevented locking the nec-
essary classes for exclusive use during this process. 

We discussed the issue with engineers from Juniper 
Networks and learned that they use a hash to pick the 
pipe. The key for the hash is composed of the 
• Source and destination IP addresses 
• Source and destination ports 
• Protocol (TCP only for now) 

• Input interface number 
The FCS hash from RFC 1662 Appendix C [3] is 

used. The resulting hash is divided modulo the number 
of pipes to select each pipe for the connection. But, the 
high bitrate data stream and low bitrate ACK stream 
are treated as equals. Because the source and destina-
tion are reversed, in general the two streams for a 
given connection will not use the same pipes. 

In SSFNet, queues are simulated by determining the 
current queue delay, adding it to the link transit time, 
and calculating the time at which the packet will be 
delivered to the network interface card (NIC) at the 
other end of the link. Thus, the input and output 
queues are essentially one and the same. Initially the 
queue always fills up rapidly so that the server’s round 
trip time (RTT) always includes the time to empty the 
queue buffer. As a result, if a server gets a second re-
quest from a client, it is difficult for the second stream 
to get started because the first stream has already filled 
up the buffer. 

On a distributed supercomputer, the diagnostics 
must be confined to the code that runs on a given node 
of the supercomputer because files are local to each 
node until the job is completed. Accordingly, all the 
built-in SSFNet diagnostics were replaced in order to 



determine the performance of the simulation and of 
TeraGrid. This locality of data makes it awkward to do 
things such as follow a single packet through the sys-
tem. At the high bitrate in TeraGrid, gigabytes of data 
are collected for each router in just a few tenths of sec-
onds of simulation time. 
 
3. The simulation 
 

75 simulated FTP sessions were used to create traf-
fic on TeraGrid. Sessions were started randomly in the 
first 0.04 s of the simulation. Traffic was always di-
rected from one site to another site, but not all sessions 
went across the main Los Angeles-Chicago link. One 
issue of performance is how well the hash works that 
determines pipe usage. The network architecture as-
sumes that the law of large numbers will apply (i.e., 
many uncorrelated streams at once). However remem-
bering that the TeraGrid is to be a computer backplane, 
the highly correlated 1 GB file transfers that we simu-
lated are typical of the use it will see.  

Figure 2 shows the pipe usage in the simulation. 
Because there are two streams for each connection, the 
sum of the bar heights are twice the number of connec-
tions, although not all connections go through each 
link. The hashes for the cross-country link have 4 bars, 
and the links from the LA and Chicago nodes have 3 
bars. Note that the link from router 6 to router 2 (Chi-
cago) has the most non-uniform hash. 

When simulating on a distributed supercomputer, 
one easy thing to diagnose is the packet flow at indi-
vidual network nodes. Figure 3 shows the packets 
leaving router 2 (Chicago) with the symbol style vary-
ing according to the destination ip address. The dis-
connected points represent retransmissions. These kill 
the TeraGrid tcp throughput even though TeraGrid is 
well below its supposed capacity. 
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Fig. 2. The hash performance of the different 
parallel pipe links. The links with 4 bars repre-
sent the Los Angeles-Chicago link (both 
ways). 
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Fig. 4. Traffic leaving router 2 (Chicago). The 
detached points represent retransmitted pack-
ets. 
 
4. Finding a needle in a haystack 
 

Given the packet retransmissions of Fig. 4, the chal-
lenge is to explain why they occur. In other words, 
where did the packet get dropped? Following packets 
is very difficult in a distributed computer because the 
network nodes write to different files. Accordingly, we 
used a single computational node. With just one node, 
the code can write information for a given transmission 
to a separate file. 

 



 
Fig. 5. Following packets from server 3:384 
(Cal Tech) to client 6:616 (PSC). A packet gets 
dropped at the Chicago router (2) and re-
transmitted. The retransmitted packet also 
gets dropped. 

 
The results for one such transmission are shown in 

Fig. 5. The transmission delay is the width between the 
plots at any height. Initially, the output queue of the 
server fills up, and almost all of the delay is due to the 
time required to empty the buffer. However, as time 
increases, the delays occur at the router buffers until 
they get full and drop packets. The loss occurs between 
routers 2 and 6 (Chicago and PSC). The missing 
packet is shown at the client in Fig. 6.  
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Fig. 6. The view of Fig. 5 at the Client showing 
the missing packet. 

5. Discussion 
The reason for the packet losses can be uncovered 

by plotting the performance of the Chicago router. 
Figure 7 shows the throughput (Mbps) as a function of 
the next hop destination. The traffic to router 6 (PSC) 
is just over 50% of its 30 Gbps capacity, while the 
traffic to router 1 (Los Angeles) is about 65% of its 
rated capacity.  
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Fig. 6. The greatest traffic rate is between Chi-
cago and Los Angeles (1), but still is only 
about 60% of the rated 40 Gbps throughput. 

However, the links to the next hop are actually 
composed of bonded 10-Gbps pipes that are selected 
by the hashing algorithm. Figure 7 breaks up the flows 
of Fig. 6 by pipe. Corresponding to the hash perform-
ance of Fig. 2, we see that one pipe between routers 2 
and 6 takes most of the traffic, exceeding the 10 Gbps 
capacity of the pipe, and leading to the ultimate packet 
drops. 
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Fig. 7. Flows leaving the Chicago router by 
destination and pipe. 
 

Compounding the problem is the large buffer size 
needed to accommodate the delay-bandwidth product. 



The Server and Client have no knowledge of the bot-
tleneck on their pipe between 2 and 6, which can sud-
denly be exacerbated by the presence of other connec-
tions that use this pipe. A large number of packets 
have already filled the output buffer of the Server, and 
are in the queue, so even if there was knowledge of the 
bottleneck, the Server rate could not be throttled back 
in time to prevent packet loss.  
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Fig. 8. Traffic leaving the PSC router in Mbps. 
 

 

 
Fig. 9. Traffic leaving the PSC router by se-
quence number and flow. Retransmitted pack-
ets are shown. 
 

Another problem arises due to the funneling of mul-
tiple pipes into a fewer number of pipes, or pipes with 
lower bandwidth. Although the server places packets 
onto TeraGrid at 1 Gbps, they can accumulate in the 
buffers of the network routers and be forwarded at a 
higher speed, ultimately arriving at the final router at a 
rate greater than the client can handle, at which point 
they will be dropped. This situation is shown in Fig. 8 
where the packets are eventually sent to clients at a 
rate that exceeds the output NIC bit rate. The packets 
can be buffered for a time, but will be dropped when 
the buffer becomes full. 

 
The same flows are plotted in Fig. 9 by sequence 

number, clearly showing the flows that have problems 
maintaining their bit rates, and flows that have prob-
lems getting started at all. 

 

Conclusions 
TeraGrid’s bonded pipe architecture relies upon the 

law of large numbers to distribute the flows among the 
parallel pipes using a hash. Unfortunately, TeraGrid is 
supposed to carry large bulk data transfers rather than 
numerous small sessions. If the hash is non-uniform, 
individual pipes can exceed their capacity. In this 
simulation, problems arose at just over half of the rated 
bandwidth capacity. Changes in the available band-
width going from node-to-node can cause packets to 
exceed the capacity of the next link. Accordingly, it is 
best if the clients and servers also have 10-Gbps net-
work interfaces. 
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